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Parallel Climate Data Assimilation PSAS Package.

Achieves 18 GFLOPS on 512-node lnt d Paragon

IIong Q. Ding, Clam Chan, Donald B. Gtmnoy,  :Ind Rolmrt D. Ikmaro
Jcl l’mpulsion I.aboralory,  Chlifwnia Institute of’ Technology
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An important aspect in short-term numerical weather prediction and long-term cl mate mod-
eling is incorporating the observational data into the simulation sys~cms. Since observational
data come with various uncertainties and errors, the clata arc incorporated in a statistical
sense, i.e., they are filtered through a Kalman filter. Because the observational points are
irregularly distributed on the surface of the earth (both latitude, longitude and elevation), and
they cha~lge from time to time, the filtered observations must to be interpolated to regular
grids on which model systems are based.

The Physical-space Statistical Analysis System (PSAS) developed at the Data Assimilation
Office (DAO) at Goddard Space Flight Center[ 1 ] is an advanced system which provides a
general framework to perform the above data assimilation tasks. ‘l-his software system is des-
ignated to replace the existing operational system at the DAO by 1998. Currently, a brute-
force application of PSAS for a complete analysis requires about 4-7hrs  on Cray C90. This
falls far short of the DAO requirement of 120 re-analyses  per day in real time,

Sohw Perfcmr-mce
MFLOPS 1’789

153

Bll

. . .,....~.

2

.4qJ

8

,, . . . . . . . . . . . . . . .

64

5019

256 512
P’/tlmber of Prc)ccssors ;,./(

Fig. 1 Performance of the equation solver.
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Recently, we have implemented several major parts of the PSAS package on the Jntel Para-
gon. We designed and incorporated several new algorithms which are efficient and scale well
to very large numbers (thousand) of processors. As a result, the parallel PSAS package solves
(without interpolation, see Section 3) an 80,000 observation problem in just 1.47 minutes
(including 12% of the time spent on reading data from disk) on the 512-node Paragon, in con-
trast, the same problem takes 152 min CPU time on the Cray 00 on the same tasks. This rep-
resents a 100-fold reduction in solution time, Thus the parallel version of PSAS now meets
and substantially exceeds the time requirements and will enhance the DAO operations signif-
icantly.

The time-critical part of the package is the sparse linear equation solver, which achieves a
sustained speed of 18.3 GFLOPS on a 512-node Paragon for an 85000 observation problem
(see Figure 1). This represents 36% of the theoretical total peak speed (512* 100MFLOPS/
node) of the 512-node Paragon. The solver achieves 779?0  peak speed on one node, 54% on 64
nodes, etc. These numbers indicate the high efficiency the package has achieved. The solver
spends 27.5 % of the time on communications for this problem on 512-node. Most of the com -
nnmication time is spent on sending or receiving (average) 536 messages per processor with
(average) 166 floating point numbers. These percentage numbers on peak total speed and on
communication indicate the highly scalable nature of the underlying algorithms.

2.0 Solving the Co]*relation Equation

The critical part of the current PSAS is the solution of a large linear system of equations, the

correlation equation, Mx=b , with 105 unknowns. The matrix M contains the complex physi-
cal correlations calculated using a large number of existing routines, and the uncertainties of
observational data, which are preprocessed in a quality control process and are stored
together with other data in input data files.

The challenges of the problem lie in the size of the matrix involved. The symmetric correla-

tion matrix M has a size of 105X105 with 26$% nommo, due to the cutoff approximation of
the correlations at 6000km on the surface. To store the entire matrix would require 10 GB (in
single precision, or 20 GB in double precision) computer memory, exceeding the capacities
of any existing sequential computer. This difficulty  is resolved in the Cray C90 codes by re-
computing the matrix on the fly, at considerable expmse of CPIJ time.

The memory-bound problem fits well to distributed-memory parallel architecture, which
COL1 Id have much,,~arge!total residence memory. The “sparse” correlation matrix, however,
does not fit to conventional sparse matrix techniques (for matrices of nonzeros typically far
lower than 26$Z0, maybe around 2fZ0 or less). This difficulty is resolved by imposing a struc-
ture to the sparse matrix: observations are divided into regions with equal numbers using a
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concurrent partitioned we have previousl  y developed [9], and the correlation cutoff is enforced
at region ]evel (see Figure 2). This approximate on introduces a sm al 1 error (oLIr rigorous com -
parison indicates a 1 -2Y0 ms error in solution), but increase the calculation speed dramati-
cally. The imposed structure is a block structure with 74% of matrix blocks ,tire identically
zero (see Figure 3). Now the matrix-vector multiplication k carried out at 13 LAS 2 level
speed, instead of the scalar speed due to the indirect indexing in conventional sparse matrix
techniques. As the result, our solver runs at 77 MFLOPS on 1-node Paragon, in contrast to 3-
10MFLOPS of typical scalar speed.

Fig.2 Regions of observations.
. .~lg,3 Block structure of the correlation

mat rix. Only mmero blocks are shown.

A large number of nonzero matrix blocks of this irregular problem must be distributed among
the processors in a load-balanced way (e.g., there arc 34907 matrix blocks in the 512-node
case). This is an optimization (linear programming) problem on 34907 variables with various
constraints. We designed a fast iterative algorithm which finds a near-optimal distribution in
just a few seconds.

Once the correlation matrix blocks are generated according to the distribution, the correlation
equation is solved by a conjugate-gradient iterative solver, of which the key part is the global
matrix-vector lllLllti~>licatioll[3]. Given the imposed matrix block structure, the multiplication
proceeds similar to the parallel block approach for dense matrix-vector multiplication. IIow-
ever, there are two important differences. First, we only store the upper-right matrix blocks
due to symmetry; this allows each non-diagonal matrix block to be used twice in each matrix-
vector multiplication, and therefore increases col~l~o~ltatio)~/col~l l~ltll~icatioll ratio. Second, the
communication here is irregular dUe to the absence of 74V0 of matrix blocks (which would
exist in dense matrix case); and storing only upper-l”ight half matrix adds more irregularity to
the communication pattern. When everything is properly implemented, this new algorithm
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-’ for the “not-so-sparse’> sptwse matrix-vector multiplication is highly efficient and scales well
to large number of processors, as indicated by the performance numbers shown above.

The partitioned, the distributor and the solver parts have been integrated and fully debugged
with a system of monitoring and debugging. We have. also rigorously and systematically ver-
ified the accuracy of the solver on smaller problems where the sequential results can be
obtained readily .

I 3.0 Inferpolafion

The solution of the correlation equation needs to be interpolated back to a regular 2°x2.50
grids on which the simulation models are based. The present sequential PSAS only interpo-
lates the solution to the 500 mb level, which takes about 5% of Cray CPU time. However, the
new DAO requirement of interpolating to all 14 levels represents a very significant computa-
tional task. This repetitive interpolation differs substantially from the solution of the correla-
tion equation. Parallel implementation is in progress. We emphasize that al 1 timing
measurements presented in this paper includec  ev’ery steps up to ( but not including) the
interpolation tasks.
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